Assignments got your hair on fire?

Douse the flames with our full-range writing service!

Experienced academic writing professionals are at your fingertips. Use this handy tool to get a price estimate for your project.

Glossary | Linus Pauling Institute | Oregon State University

AB - The electrochemical CO2 reduction reaction to form valued hydrocarbon molecules is an attractive process, because it can be coupled with renewable energy resources for carbon recycling. For an efficient CO2 conversion, designing a catalyst with high activity and selectivity is crucial, because the CO2 reduction reaction in aqueous media competes with the hydrogen evolution reaction (HER) intensely. We have developed a strategy to tune CO2 reduction activity by modulating the binding energies of the intermediates on the electrocatalyst surfaces with the assistance of molecules that contain the functional group. We discovered that the amine functional group on Ag nanoparticle is highly effective in improving selective CO production (Faradaic efficiency to 94.2%) by selectively suppressing HER, while the thiol group rather increases HER activity. A density functional theory (DFT) calculation supports the theory that attaching amine molecules to Ag nanoparticles destabilizes the hydrogen binding, which effectively suppresses HER selectively, while an opposite tendency is found with thiol molecules. In addition, changes in the product selectivity, depending on the functional group, are also observed when the organic molecules are added after nanoparticle synthesis or nanoparticles are immobilized with an amine (or thiol)-containing anchoring agent. CO Faradaic efficiencies were consistently improved when the Ag nanoparticle was modified with amine groups, compared with that of its thiol counterpart.

N2 - The electrochemical CO2 reduction reaction to form valued hydrocarbon molecules is an attractive process, because it can be coupled with renewable energy resources for carbon recycling. For an efficient CO2 conversion, designing a catalyst with high activity and selectivity is crucial, because the CO2 reduction reaction in aqueous media competes with the hydrogen evolution reaction (HER) intensely. We have developed a strategy to tune CO2 reduction activity by modulating the binding energies of the intermediates on the electrocatalyst surfaces with the assistance of molecules that contain the functional group. We discovered that the amine functional group on Ag nanoparticle is highly effective in improving selective CO production (Faradaic efficiency to 94.2%) by selectively suppressing HER, while the thiol group rather increases HER activity. A density functional theory (DFT) calculation supports the theory that attaching amine molecules to Ag nanoparticles destabilizes the hydrogen binding, which effectively suppresses HER selectively, while an opposite tendency is found with thiol molecules. In addition, changes in the product selectivity, depending on the functional group, are also observed when the organic molecules are added after nanoparticle synthesis or nanoparticles are immobilized with an amine (or thiol)-containing anchoring agent. CO Faradaic efficiencies were consistently improved when the Ag nanoparticle was modified with amine groups, compared with that of its thiol counterpart.

High-Rate Solar Photocatalytic Conversion of CO 2 and Water Vapor to Hydrocarbon Fuels

Zinc Oxide—From Synthesis to Application: A Review - MDPI

Materials preparation, electrochemical measurements, and physical characterizations

The electrochemical CO2 reduction reaction to form valued hydrocarbon molecules is an attractive process, because it can be coupled with renewable energy resources for carbon recycling. For an efficient CO2 conversion, designing a catalyst with high activity and selectivity is crucial, because the CO2 reduction reaction in aqueous media competes with the hydrogen evolution reaction (HER) intensely. We have developed a strategy to tune CO2 reduction activity by modulating the binding energies of the intermediates on the electrocatalyst surfaces with the assistance of molecules that contain the functional group. We discovered that the amine functional group on Ag nanoparticle is highly effective in improving selective CO production (Faradaic efficiency to 94.2%) by selectively suppressing HER, while the thiol group rather increases HER activity. A density functional theory (DFT) calculation supports the theory that attaching amine molecules to Ag nanoparticles destabilizes the hydrogen binding, which effectively suppresses HER selectively, while an opposite tendency is found with thiol molecules. In addition, changes in the product selectivity, depending on the functional group, are also observed when the organic molecules are added after nanoparticle synthesis or nanoparticles are immobilized with an amine (or thiol)-containing anchoring agent. CO Faradaic efficiencies were consistently improved when the Ag nanoparticle was modified with amine groups, compared with that of its thiol counterpart.

PDF Downloads : Oriental Journal of Chemistry

De novo synthesis the formation of an essential molecule from simple precursor molecules

Versatile Services that Make Studying Easy
We write effective, thought-provoking essays from scratch
We create erudite academic research papers
We champion seasoned experts for dissertations
We make it our business to construct successful business papers
What if the quality isn’t so great?
Our writers are sourced from experts, and complete an obstacle course of testing to join our brigade. Ours is a top service in the English-speaking world.
How do I know the professor won’t find out?
Everything is confidential. So you know your student paper is wholly yours, we use CopyScape and WriteCheck to guarantee originality (never TurnItIn, which professors patrol).
What if it doesn’t meet my expectations?
Unchanged instructions afford you 10 days to request edits after our agreed due date. With 94% satisfaction, we work until your hair is comfortably cool.
Clients enjoy the breezy experience of working with us
Click to learn our proven method

B.R.S.M — An organic chemistry blog


89%
of clients claim significantly improved grades thanks to our work.
98%
of students agree they have more time for other things thanks to us.
Clients Speak
“I didn’t expect I’d be thanking you for actually improving my own writing, but I am. You’re like a second professor!”