Assignments got your hair on fire?

Douse the flames with our full-range writing service!

Experienced academic writing professionals are at your fingertips. Use this handy tool to get a price estimate for your project.

Insulin Biosynthesis, Secretion, and Action

Anti-apoptotic Bcl-2 family members close the VDAC, whereas some (but not all) pro-apoptotic members interact with the VDAC to generate a protein-conducting channel through which cytochrome c can pass. Although the VDAC is directly involved in the apoptotic increase of mitochondrial membrane permeability and is known to be a component of the permeability transition pore complex, its role in the regulation of outer membrane permeability can be separated from the occurrence of permeability transition events, such as mitochondrial swelling followed by rupture of the outer mitochondrial membrane. The VDAC not only interacts with Bcl-2 family members, but also with other proteins, and probably acts as a convergence point for a variety of life-or-death signals.

Mitochondria play a crucial role in regulating cell death, which is mediated by outer membrane permeabilization in response to death triggers such as DNA damage and growth factor deprivation. Mitochondrial membrane permeabilization induces the release of cytochrome c, Smac/DIABLO, and AIF, which are regulated by proapoptotic and antiapoptotic proteins such asBax/Bak and Bcl-2/xL in caspase-dependent and caspase-independent apoptosis pathways.

"Phosphatidylinositol biosynthesis: biochemistry and regulation."

Insulin is produced in the beta cells of the pancreatic islets

Involved in the suppression of bile acid biosynthesis through down-regulation of CYP7A1 expression, following positive regulation of the JNK and ERK1/2 cascades.

Adv Exp Med Biol. 2013;986:209-20. doi: 10.1007/978-94-007-4719-7_11.
Cannabinoid signaling in glioma cells.
Ellert-Miklaszewska A1, Ciechomska I, Kaminska B.
Cannabinoids are a group of structurally heterogeneous but pharmacologically related compounds, including plant-derived cannabinoids, synthetic substances and endogenous cannabinoids, such as anandamide and 2-arachidonoylglycerol. Cannabinoids elicit a wide range of central and peripheral effects mostly mediated through cannabinoid receptors. There are two types of specific G(i/o)-protein-coupled receptors cloned so far, called CB1 and CB2, although an existence of additional cannabinoid-binding receptors has been suggested. CB1 and CB2 differ in their predicted amino acid sequence, tissue distribution, physiological role and signaling mechanisms. Significant alterations of a balance in the cannabinoid system between the levels of endogenous ligands and their receptors occur during malignant transformation in various types of cancer, including gliomas. Cannabinoids exert anti-proliferative action in tumor cells. Induction of cell death by cannabinoid treatment relies on the generation of a pro-apoptotic sphingolipid ceramide and disruption of signaling pathways crucial for regulation of cellular proliferation, differentiation or apoptosis. Increased ceramide levels lead also to ER-stress and autophagy in drug-treated glioblastoma cells.

We propose that the use of CBD, as an inhibitor of Id-1, represents a novel strategy to treat breast cancer. A wide range of cannabinoid compounds were tested and CBD, a nonpsychoactive cannabinoid constituent, was the most potent inhibitor of human breast cancer cell aggressiveness through Id-1 mRNA and protein down-regulation.

Peptide Hormones - The Medical Biochemistry Page

Mol Cancer Ther. 2007 Nov;6(11):2921-7.
Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells.
McAllister SD1, Christian RT, Horowitz MP, Garcia A, Desprez PY.
Invasion and metastasis of aggressive breast cancer cells is the final and fatal step during cancer progression, and is the least understood genetically. Clinically, there are still limited therapeutic interventions for aggressive and metastatic breast cancers available. Clearly, effective and nontoxic therapies are urgently required. Id-1, an inhibitor of basic helix-loop-helix transcription factors, has recently been shown to be a key regulator of the metastatic potential of breast and additional cancers. Using a mouse model, we previously determined that metastatic breast cancer cells became significantly less invasive in vitro and less metastatic in vivo when Id-1 was down-regulated by stable transduction with antisense Id-1. It is not possible at this point, however, to use antisense technology to reduce Id-1 expression in patients with metastatic breast cancer. Here, we report that cannabidiol (CBD), a cannabinoid with a low-toxicity profile, could down-regulate Id-1 expression in aggressive human breast cancer cells. The CBD concentrations effective at inhibiting Id-1 expression correlated with those used to inhibit the proliferative and invasive phenotype of breast cancer cells. CBD was able to inhibit Id-1 expression at the mRNA and protein level in a concentration-dependent fashion. These effects seemed to occur as the result of an inhibition of the Id-1 gene at the promoter level. Importantly, CBD did not inhibit invasiveness in cells that ectopically expressed Id-1. In conclusion, CBD represents the first nontoxic exogenous agent that can significantly decrease Id-1 expression in metastatic breast cancer cells leading to the down-regulation of tumor aggressiveness.

Id-1 (Inhibitor of differentiation/DNA binding) is a member of the helix-loop-helix protein family expressed in actively proliferating cells. It regulates gene transcription by heterodimerization with the basic helix-loop-helix transcription factors and therefore inhibits them from DNA binding and transactivation of their target genes. Early studies showed that Id-1 functions mainly as a regulator in cellular differentiation of the muscle cells. The oncogenic role of Id-1 was revealed recently by the finding that Id-1 expression was able to induce cancer cell growth and promote cell survival. In addition, Id-1 protein was frequently overexpressed in over 20 types of cancer, supporting its role in the tumorigenesis of a wide range of tissues. However, the fact that Id-1 was able to activate multiple pathways involved in tumor progression suggests that Id-1 may in addition function in promotion of tumor development. For example, overexpression of Id-1 was found to induce expression of MT1-MMP protein, leading to invasion of breast cancer cells. A close association between Id-1 expression and angiogenesis has also been demonstrated recently in both normal and cancer cells. Accordingly, in prostate cancer cells, expression of Id-1 was able to activate EGF-R and nuclear factor-kappaB activities and resulted in progression to androgen independence. In addition, in both nasopharyngeal carcinoma and prostate cancer cells, Id-1 expression was found to protect the cells from chemotherapeutic drug-induced apoptosis through regulation of the Raf-1/MAPK and JNK pathways. This review will discuss recent evidence supporting the role of Id-1 in tumor progression and the mechanisms involved.

Versatile Services that Make Studying Easy
We write effective, thought-provoking essays from scratch
We create erudite academic research papers
We champion seasoned experts for dissertations
We make it our business to construct successful business papers
What if the quality isn’t so great?
Our writers are sourced from experts, and complete an obstacle course of testing to join our brigade. Ours is a top service in the English-speaking world.
How do I know the professor won’t find out?
Everything is confidential. So you know your student paper is wholly yours, we use CopyScape and WriteCheck to guarantee originality (never TurnItIn, which professors patrol).
What if it doesn’t meet my expectations?
Unchanged instructions afford you 10 days to request edits after our agreed due date. With 94% satisfaction, we work until your hair is comfortably cool.
Clients enjoy the breezy experience of working with us
Click to learn our proven method

Post-translational modification - Wikipedia

The role of phospholipids in cell function - ScienceDirect

Abstract Glioblastoma is the most common form of primary adult brain tumors. A majority of glioblastomas grow invasively into distant brain tissue, leading to tumor recurrence, which is ultimately incurable. It is, therefore, essential to discover master regulators that control glioblastoma invasiveness and target them therapeutically. We show here that the transcriptional regulator Id-1 plays a critical role in modulating the invasiveness of glioblastoma cell lines and primary glioblastoma cells. Id-1 expression levels positively correlate with glioma cell invasiveness in culture and with histopathologic grades in patient biopsies. Id-1 knockdown dramatically reduces glioblastoma cell invasion that is accompanied by profound morphologic changes and robust reduction in expression levels of “mesenchymal” markers, as well as inhibition of self-renewal potential and downregulation of glioma stem cell markers. Importantly, genetic knockdown of Id-1 leads to a significant increase in survival in an orthotopic model of human glioblastoma. Furthermore, we show that a nontoxic compound,cannabidiol, significantly downregulates Id-1 gene expression and associated glioma cell invasiveness and self-renewal. In addition, cannabidiol significantly inhibits the invasion of glioblastoma cells through an organotypic brain slice and glioma progression in vivo. Our results suggest that Id-1 regulates multiple tumor-promoting pathways in glioblastoma and that drugs targeting Id-1 represent a novel and promising strategy for improving the therapy and outcome of patients with glioblastoma. Cancer Res; 73(5); 1559–69.


The BCL-2 protein family determines the commitment of cells to apoptosis, an ancient cell suicide programme that is essential for development, tissue homeostasis and immunity. Too little apoptosis can promote cancer and autoimmune diseases; too much apoptosis can augment ischaemic conditions and drive neurodegeneration. We discuss the biochemical, structural and genetic studies that have clarified how the interplay between members of the BCL-2 family on mitochondria sets the apoptotic threshold. These mechanistic insights into the functions of the BCL-2 family are illuminating the physiological control of apoptosis, the pathological consequences of its dysregulation and the promising search for novel cancer therapies that target the BCL-2 family.

Selective Inhibition of FOXO1 Activator/Repressor …

Constant deregulation of Id1 and Id3 has been implicated in a wide range of carcinomas. However, underlying molecular evidence for the joint role of Id1 and Id3 in the tumorigenicity of small cell lung cancer (SCLC) is sparse. Investigating the biological significance of elevated expression in SCLC cells, we found that Id1 and Id3 co-suppression resulted in significant reduction of proliferation rate, invasiveness and anchorage-independent growth. Suppressing both Id1 and Id3 expression also greatly reduced the average size of tumors produced by transfectant cells when inoculated subcutaneously into nude mice. Further investigation revealed that suppressed expression of Id1 and Id3 was accompanied by decreased angiogenesis and increased apoptosis. Therefore, the SCLC tumorigenicity suppression effect of double knockdown of Id1 and Id3 may be regulated through pathways of apoptosis and angiogenesis.

Search for articles by this author Affiliations

Cancer Cell. 2003 Jun;3(6):525-30.
Id proteins in cell growth and tumorigenesis.
Sikder HA1, Devlin MK, Dunlap S, Ryu B, Alani RM.
Since the gene encoding Id1 was cloned in 1990, Id proteins have been implicated in regulating a variety of cellular processes, including cellular growth, senescence, differentiation, apoptosis, angiogenesis, and neoplastic transformation. The development of knockout and transgenic animal models for many members of the Id gene family has been particularly useful in sorting out the biologic relevance of these genes and their expression during normal development, malignant transformation, and tumor progression. Here we review the current understanding of Id gene function, the biologic consequences of Id gene expression, and the implications for Id gene regulation of cell growth and tumorigenesis.
Cellular differentiation programs are tightly controlled through the coordinated regulation of gene expression. Basic helix-loop-helix (bHLH) transcription factors regulate the differentiation programs of multiple cell lineages (reviewed in Norton, 2000). These proteins share a common sequence motif of a stretch of basic amino acids responsible for site-specific DNA binding adjacent to a helix-loop-helix dimerization domain. The Id family of helix-loop-helix proteins does not possess a basic DNA binding domain and functions as a dominant-negative regulator of basic HLH proteins through the formation of inactive heterodimers with intact bHLH transcription factors (Figure 1). The Id family of proteins (comprised of 4 members designated Id1–Id4) has been demonstrated to bind the ubiquitously expressed bHLH E-proteins or cell lineage-restricted bHLH transcription factors, leading to inhibition of lineage-specific gene expression and differentiation (Norton et al., 1998). Hence, the name Id refers to both inhibition of differentiation and inhibition of DNA binding. Transcriptional inhibition by Id proteins is mediated via inhibition of DNA binding of bHLH or other activator proteins at E boxes (CANNTG), N boxes (CACNAG), or Ets sites (GGAA/T) present in the promoter regions of regulated genes (reviewed in Zebedee and Hara, 2001). Since cellular differentiation programs are frequently altered during the development of neoplastic disease, it is not surprising that Id proteins would play a role in this process. Indeed, a clue to the potential role of Id genes in tumorigenesis came with the observation that, in general, high Id expression levels are found in proliferative, undifferentiated cells—a feature which is characteristic of tumor cells (Israel et al., 1999). Over the past several years, the particular mechanisms underlying the effects of Id genes on cell growth and differentiation have been investigated. Here we review data supporting the critical role of Id gene regulation in the development of normal cellular differentiation programs. We also review mechanisms of Id gene regulation of cellular growth controls and the cell cycle machinery and evaluate the contribution of dysregulated Id gene expression to the process of tumorigenesis.

of clients claim significantly improved grades thanks to our work.
of students agree they have more time for other things thanks to us.
Clients Speak
“I didn’t expect I’d be thanking you for actually improving my own writing, but I am. You’re like a second professor!”