Assignments got your hair on fire?

Douse the flames with our full-range writing service!

Experienced academic writing professionals are at your fingertips. Use this handy tool to get a price estimate for your project.

perspectives in their synthesis, characterization and ..

N2 - In this work, size-controlled multifunctional mesoporous silica nanoparticles having large surface areas, embedded luminescence, high magnetization, and excellent aqueous dispersity have been successfully prepared by using a simple one-pot synthesis. The size and pore ordering of these particles can be easily controlled based on the number density of Fe 3O 4 nanoparticle nucleation sites introduced during the silica condensation reaction. Dissolution of the embedded Fe 3O 4 nanoparticles yields hollow mesoporous silica nanoparticles as well. These multifunctional porous nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, nitrogen adsorption-desorption behavior, dynamic light scattering, zeta potential, magnetic susceptibility, and photoluminescence. Furthermore, in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and hemolysis assays were performed to evaluate any unintended cytotoxicity. The biocompatibility of the multifunctional nanoparticles, even at very high doses, ensures their potential in biomedical applications.

AB - In this work, size-controlled multifunctional mesoporous silica nanoparticles having large surface areas, embedded luminescence, high magnetization, and excellent aqueous dispersity have been successfully prepared by using a simple one-pot synthesis. The size and pore ordering of these particles can be easily controlled based on the number density of Fe 3O 4 nanoparticle nucleation sites introduced during the silica condensation reaction. Dissolution of the embedded Fe 3O 4 nanoparticles yields hollow mesoporous silica nanoparticles as well. These multifunctional porous nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, nitrogen adsorption-desorption behavior, dynamic light scattering, zeta potential, magnetic susceptibility, and photoluminescence. Furthermore, in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and hemolysis assays were performed to evaluate any unintended cytotoxicity. The biocompatibility of the multifunctional nanoparticles, even at very high doses, ensures their potential in biomedical applications.

Biodegradable starch derivatives with tunable charge density—synthesis, characterization, and ..

Characterization of PLGA-PEG NPs

TY - JOUR. T1 - Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles. AU - Lin,Yu Shen

Hydrophilic SPIONs for biological application usually consist of an iron oxide core and a surface coating. On one hand, synthesis methods of the iron oxide core, stabilizer and reaction parameters have significant effects on the size and magnetic properties of SPIONs [, -]. On the other hand, surface coating materials, functionalization materials and surface engineering methods significantly affect ultimate size in living fluid, biocompatibility, cell internalization and duration in cells [, , , ]. Therefore, to prepare ideal SPIONs, major factors such as core synthesis, surface coating and functional materials, and surface engineering methods should be carefully considered.

In this work, size-controlled multifunctional mesoporous silica nanoparticles having large surface areas, embedded luminescence, high magnetization, and excellent aqueous dispersity have been successfully prepared by using a simple one-pot synthesis. The size and pore ordering of these particles can be easily controlled based on the number density of Fe 3O 4 nanoparticle nucleation sites introduced during the silica condensation reaction. Dissolution of the embedded Fe 3O 4 nanoparticles yields hollow mesoporous silica nanoparticles as well. These multifunctional porous nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, nitrogen adsorption-desorption behavior, dynamic light scattering, zeta potential, magnetic susceptibility, and photoluminescence. Furthermore, in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and hemolysis assays were performed to evaluate any unintended cytotoxicity. The biocompatibility of the multifunctional nanoparticles, even at very high doses, ensures their potential in biomedical applications.

Synthesis, characterization, ..

Although many synthetic routes have been developed for the preparation of iron oxide core with tunable shape, size and magnetization, several challenges remain for the naked SPIONs in terms of stem cell labeling, including: (i) poor water solubility and tendency of aggregation due to large surface/volume ratio; (ii) low cellular uptake efficiency; (iii) potential toxicity. To address these problems, the most straightforward and effective method seems to be coating the iron oxide core by a layer. The nature of the surface coatings and modification methods determine the physical and biologic properties such as the overall size, surface charge, coating density, toxicity and degradability, which finally affect the fate of SPIONPs in the cells [, ]. This following section focuses on the currently used surface modification materials (e.g. PLL, PEI, chitosan, PEG, citric acid and so on) and methods (e.g. coating, post-synthesis coatings including blending, polymerization, ligand exchange) for the SPIONs applied for stem cell labeling and tracking. The influence of these factors on labeling efficiency and biocompatibility is also discussed.

Synthesis and Characterization of Biocompatible and Size-Tunable Multifunctional Porous Silica Nanoparticles

Heparin is a highly sulfated glycosaminoglycan molecule that interacts with various proteins containing heparin-binding domains within the extracellular matrix milieu. It has been widely used in drug delivery systems and tissue engineering to improve the biocompatibility and blood compatibility of biomaterials []. Recently, Lee and coworkers [] synthesized SPIONs coated with unfractionated heparin (UFH-SPIOs) by coating (Figure ). The uptake efficiency of UFH-SPIO without the aid of transfection agents was greater than that of dextran coated SPIO by approximately 3 folds when treated for 1 h. This was because the coating of heparin on the surface of NP increased its hydrophilicity, which promoted cell attachment to the NP surface. When the UFH-SPIO-labeled hMSCs were transplanted into the left renal subcapsular membranes of nude mice, they were successfully visualized and detected by 2 weighted MRI imaging after a month.

Versatile Services that Make Studying Easy
We write effective, thought-provoking essays from scratch
We create erudite academic research papers
We champion seasoned experts for dissertations
We make it our business to construct successful business papers
What if the quality isn’t so great?
Our writers are sourced from experts, and complete an obstacle course of testing to join our brigade. Ours is a top service in the English-speaking world.
How do I know the professor won’t find out?
Everything is confidential. So you know your student paper is wholly yours, we use CopyScape and WriteCheck to guarantee originality (never TurnItIn, which professors patrol).
What if it doesn’t meet my expectations?
Unchanged instructions afford you 10 days to request edits after our agreed due date. With 94% satisfaction, we work until your hair is comfortably cool.
Clients enjoy the breezy experience of working with us
Click to learn our proven method

Synthesis of biocompatible AuAgS/Ag2S nanoclusters …


Type or paste a DOI name into the text box

Kathryn Uhrich, dean of the College of Natural and Agricultural Sciences and professor of chemistry, earned her Ph.D. degree from Cornell University. Uhrich began her academic career at Rutgers University with a research program centered on the synthesis and characterization of biocompatible, biodegradable polymers serving a critical need in therapeutics/drug delivery and tissue engineering. Her current research program focuses on designing innovative, bioactive polymers for food, environmental, and personal care applications.







89%
of clients claim significantly improved grades thanks to our work.
98%
of students agree they have more time for other things thanks to us.
Clients Speak
“I didn’t expect I’d be thanking you for actually improving my own writing, but I am. You’re like a second professor!”