Experienced academic writing professionals are at your fingertips.
Use this handy tool to get a price estimate for your project.

Before actually conducting a hypothesis test, you have to put two possible hypotheses on the table — the null hypothesis is one of them. But, if the null hypothesis is rejected (that is, there was sufficient evidence against it), what’s your alternative going to be? Actually, three possibilities exist for the second (or alternative) hypothesis, denoted H_{a}. Here they are, along with their shorthand notations in the context of the pie example:

Every hypothesis test contains a set of two opposing statements, or hypotheses, about a population parameter. The first hypothesis is called the denoted H_{0}. The null hypothesis always states that the population parameter is to the claimed value. For example, if the claim is that the average time to make a name-brand ready-mix pie is five minutes, the statistical shorthand notation for the null hypothesis in this case would be as follows:

This criticism only applies to two-tailed tests, where the null hypothesis is "Things are exactly the same" and the alternative is "Things are different." Presumably these critics think it would be okay to do a one-tailed test with a null hypothesis like "Foot length of male chickens is the same as, or less than, that of females," because the null hypothesis that male chickens have smaller feet than females could be true. So if you're worried about this issue, you could think of a two-tailed test, where the null hypothesis is that things are the same, as shorthand for doing two one-tailed tests. A significant rejection of the null hypothesis in a two-tailed test would then be the equivalent of rejecting one of the two one-tailed null hypotheses.

A related criticism is that a significant rejection of a null hypothesis might not be biologically meaningful, if the difference is too small to matter. For example, in the chicken-sex experiment, having a treatment that produced 49.9% male chicks might be significantly different from 50%, but it wouldn't be enough to make farmers want to buy your treatment. These critics say you should estimate the effect size and put a on it, not estimate a *P* value. So the goal of your chicken-sex experiment should not be to say "Chocolate gives a proportion of males that is significantly less than 50% (*P*=0.015)" but to say "Chocolate produced 36.1% males with a 95% confidence interval of 25.9 to 47.4%." For the chicken-feet experiment, you would say something like "The difference between males and females in mean foot size is 2.45 mm, with a confidence interval on the difference of ±1.98 mm."

A fairly common criticism of the hypothesis-testing approach to statistics is that the null hypothesis will always be false, if you have a big enough sample size. In the chicken-feet example, critics would argue that if you had an infinite sample size, it is impossible that male chickens would have *exactly* the same average foot size as female chickens. Therefore, since you know before doing the experiment that the null hypothesis is false, there's no point in testing it.

How do you know which hypothesis to put in H_{0} and which one to put in H_{a}? Typically, the null hypothesis says that nothing new is happening; the previous result is the same now as it was before, or the groups have the same average (their difference is equal to zero). In general, you assume that people’s claims are true until proven otherwise. So the question becomes: Can you prove otherwise? In other words, can you show sufficient evidence to reject H_{0}?

Versatile Services that Make Studying Easy

We write effective, thought-provoking essays from scratch

We create erudite academic research papers

We champion seasoned experts for dissertations

We make it our business to construct successful business papers

What if the quality isn’t so great?

Our writers are sourced from experts, and complete an
obstacle course of testing to join our brigade. Ours
is a top service in the English-speaking world.

How do I know the professor
won’t find out?

Everything is confidential. So you know your student
paper is wholly yours, we use CopyScape and WriteCheck
to guarantee originality (never TurnItIn, which
professors patrol).

What if it doesn’t meet my expectations?

Unchanged instructions afford you 10 days to
request edits after our agreed due date. With
94% satisfaction, we work until your hair is
comfortably cool.

Clients enjoy the breezy experience of working with us

Click to learn our proven method

Which alternative hypothesis you choose in setting up your hypothesis test depends on what you’re interested in concluding, should you have enough evidence to refute the null hypothesis (the claim). The alternative hypothesis should be decided upon before collecting or looking at any data, so as not to influence the results.

Use the significance level to decide whether to reject or fail to reject the null hypothesis (H_{0}). When the p-value is less than the significance level, the usual interpretation is that the results are statistically significant, and you reject H_{0}.

ANOVA is a test that provides a global assessment of a statistical difference in more than two independent means. In this example, we find that there is a statistically significant difference in mean weight loss among the four diets considered. In addition to reporting the results of the statistical test of hypothesis (i.e., that there is a statistically significant difference in mean weight losses at α=0.05), investigators should also report the observed sample means to facilitate interpretation of the results. In this example, participants in the low calorie diet lost an average of 6.6 pounds over 8 weeks, as compared to 3.0 and 3.4 pounds in the low fat and low carbohydrate groups, respectively. Participants in the control group lost an average of 1.2 pounds which could be called the placebo effect because these participants were not participating in an active arm of the trial specifically targeted for weight loss. Are the observed weight losses clinically meaningful?

Here are three experiments to illustrate when the different approaches to statistics are appropriate. In the first experiment, you are testing a plant extract on rabbits to see if it will lower their blood pressure. You already know that the plant extract is a diuretic (makes the rabbits pee more) and you already know that diuretics tend to lower blood pressure, so you think there's a good chance it will work. If it does work, you'll do more low-cost animal tests on it before you do expensive, potentially risky human trials. Your prior expectation is that the null hypothesis (that the plant extract has no effect) has a good chance of being false, and the cost of a false positive is fairly low. So you should do frequentist hypothesis testing, with a significance level of 0.05.

One-way ANOVA is a hypothesis test that evaluates two mutually exclusive statements about two or more population means. These two statements are called the null hypothesis and the alternative hypotheses. A hypothesis test uses sample data to determine whether to reject the null hypothesis.

In the olden days, when people looked up *P* values in printed tables, they would report the results of a statistical test as "*P**P**P*>0.10", etc. Nowadays, almost all computer statistics programs give the exact *P* value resulting from a statistical test, such as *P*=0.029, and that's what you should report in your publications. You will conclude that the results are either significant or they're not significant; they either reject the null hypothesis (if *P* is below your pre-determined significance level) or don't reject the null hypothesis (if *P* is above your significance level). But other people will want to know if your results are "strongly" significant (*P* much less than 0.05), which will give them more confidence in your results than if they were "barely" significant (*P*=0.043, for example). In addition, other researchers will need the exact *P* value if they want to combine your results with others into a .

89%

of clients claim significantly improved grades thanks to our work.

98%

of students agree they have more time for other things thanks to us.

Clients Speak

“I didn’t expect I’d be thanking you for actually
improving my own writing, but I am. You’re like a second professor!”